Scientific Reports (May 2018)

Impact of 18F-FET PET on Target Volume Definition and Tumor Progression of Recurrent High Grade Glioma Treated with Carbon-Ion Radiotherapy

  • Charlotte Debus,
  • Maria Waltenberger,
  • Ralf Floca,
  • Ali Afshar-Oromieh,
  • Nina Bougatf,
  • Sebastian Adeberg,
  • Sabine Heiland,
  • Martin Bendszus,
  • Wolfgang Wick,
  • Stefan Rieken,
  • Uwe Haberkorn,
  • Jürgen Debus,
  • Maximilian Knoll,
  • Amir Abdollahi

DOI
https://doi.org/10.1038/s41598-018-25350-7
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 13

Abstract

Read online

Abstract High-precision radiotherapy (HPR) of recurrent high grade glioma (HGG) requires accurate spatial allocation of these infiltrative tumors. We investigated the impact of 18F-FET PET on tumor delineation and progression of recurrent HGG after HPR with carbon ions. T1 contrast enhanced MRI and 18F-FET-PET scans of 26 HGG patients were fused with radiotherapy planning volumes. PET-positive (PET+) tumor volumes using different isocontours (I%) were systematically investigated and compared with MRI-derived gross tumor volumes (GTV). Standardized uptake ratios (SUR) were further correlated with GTV and tumor progression patterns. In grade IV glioma, SUR > 2.92 significantly correlated with poor median overall survival (6.5 vs 13.1 months, p = 0.00016). We found no reliable SUR cut-off criteria for definition of PET+ volumes. Overall conformity between PET and MRI-based contours was low, with maximum conformities between 0.42–0.51 at I40%. The maximum sensitivity and specificity for PET+ volumes outside of GTV predicting tumor progression were 0.16 (I40%) and 0.52 (I50%), respectively. In 75% of cases, FLAIR hyperintense area covered over 80% of PET+ volumes. 18F-FET-PET derived SUR has a prognostic impact in grade IV glioma. The value of substantial mismatches between MRI-based GTV and PET+ volumes to improve tumor delineation in radiotherapy awaits further validation in randomized prospective trials.