Atmospheric Measurement Techniques (Oct 2023)
The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records
- M. Kiefer,
- D. F. Hurst,
- D. F. Hurst,
- G. P. Stiller,
- S. Lossow,
- H. Vömel,
- J. Anderson,
- F. Azam,
- F. Azam,
- J.-L. Bertaux,
- L. Blanot,
- K. Bramstedt,
- J. P. Burrows,
- R. Damadeo,
- B. M. Dinelli,
- P. Eriksson,
- M. García-Comas,
- J. C. Gille,
- J. C. Gille,
- M. Hervig,
- Y. Kasai,
- F. Khosrawi,
- F. Khosrawi,
- D. Murtagh,
- G. E. Nedoluha,
- S. Noël,
- P. Raspollini,
- W. G. Read,
- K. H. Rosenlof,
- A. Rozanov,
- C. E. Sioris,
- T. Sugita,
- T. von Clarmann,
- K. A. Walker,
- K. Weigel,
- K. Weigel
Affiliations
- M. Kiefer
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany
- D. F. Hurst
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- D. F. Hurst
- Global Monitoring Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado, USA
- G. P. Stiller
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany
- S. Lossow
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany
- H. Vömel
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
- J. Anderson
- Atmospheric and Planetary Sciences (APS), Hampton University, Hampton, Virginia, USA
- F. Azam
- University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany
- F. Azam
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Networked Energy Systems, Oldenburg, Germany
- J.-L. Bertaux
- LATMOS, Sorbonne Université, Paris, France
- L. Blanot
- ACRI-ST, 11 Boulevard d'Alembert, 78280 Guyancourt, France
- K. Bramstedt
- University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany
- J. P. Burrows
- University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany
- R. Damadeo
- NASA Langley Research Center, Hampton, VA, USA
- B. M. Dinelli
- Istituto di Scienze dell'Atmosfera e del Clima del Consiglio Nazionale delle Ricerche (ISAC-CNR), Bologna, Italy
- P. Eriksson
- Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
- M. García-Comas
- Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain
- J. C. Gille
- National Center for Atmospheric Research, Atmospheric Chemistry Observations & Modeling Laboratory, P.O. Box 3000, Boulder, USA
- J. C. Gille
- Atmospheric and Oceanic Sciences, University of Colorado, Boulder, USA
- M. Hervig
- GATS Inc., Driggs, Idaho, USA
- Y. Kasai
- National Institute of Information and Communications Technology (NICT), Terahertz Technology Research Center, Tokyo, Japan
- F. Khosrawi
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany
- F. Khosrawi
- Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
- D. Murtagh
- Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
- G. E. Nedoluha
- Remote Sensing Division, Naval Research Laboratory, Washington, DC, USA
- S. Noël
- University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany
- P. Raspollini
- Istituto di Fisica Applicata del Consiglio Nazionale delle Ricerche (IFAC-CNR), Sesto Fiorentino, Italy
- W. G. Read
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- K. H. Rosenlof
- Chemical Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, Colorado, USA
- A. Rozanov
- University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany
- C. E. Sioris
- Centre for Research in Earth and Space Science, York University, Toronto, Canada
- T. Sugita
- Earth System Division, Global Atmospheric Chemistry Section, National Institute for Environmental Studies, Tsukuba, Japan
- T. von Clarmann
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany
- K. A. Walker
- Department of Physics, University of Toronto, Toronto, Canada
- K. Weigel
- University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany
- K. Weigel
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
- DOI
- https://doi.org/10.5194/amt-16-4589-2023
- Journal volume & issue
-
Vol. 16
pp. 4589 – 4642
Abstract
Satellite data records of stratospheric water vapour have been compared to balloon-borne frost point hygrometer (FP) profiles that are coincident in space and time. The satellite data records of 15 different instruments cover water vapour data available from January 2000 through December 2016. The hygrometer data are from 27 stations all over the world in the same period. For the comparison, real or constructed averaging kernels have been applied to the hygrometer profiles to adjust them to the measurement characteristics of the satellite instruments. For bias evaluation, we have compared satellite profiles averaged over the available temporal coverage to the means of coincident FP profiles for individual stations. For drift determinations, we analysed time series of relative differences between spatiotemporally coincident satellite and hygrometer profiles at individual stations. In a synopsis we have also calculated the mean biases and drifts (and their respective uncertainties) for each satellite record over all applicable hygrometer stations in three altitude ranges (10–30 hPa, 30–100 hPa, and 100 hPa to tropopause). Most of the satellite data have biases <10 % and average drifts <1 % yr−1 in at least one of the respective altitude ranges. Virtually all biases are significant in the sense that their uncertainty range in terms of twice the standard error of the mean does not include zero. Statistically significant drifts (95 % confidence) are detected for 35 % of the ≈ 1200 time series of relative differences between satellites and hygrometers.