Journal of Ocean Engineering and Science (Mar 2023)
Construction and experimental verification research of a magnetic detection system for submarine pipelines based on a two-part towed platform
Abstract
With the acceleration of the investigation and development of marine resources, the detection and location of submarine pipelines have become a necessary part of modern marine engineering. Submarine pipelines are a typical weak magnetic anomaly target, and their magnetic anomaly detection can only be realized within a certain distance. At present, a towfish or an autonomous underwater vehicle (AUV) is mainly used as the platform to equip magnetometers close to the submarine pipelines for magnetic anomaly detection. However, the mother ship directly affects the towfish, thus causing control interference. The AUV cannot detect in real time, which affects the magnetic anomaly detection and creates problems regarding detection efficiency. Meanwhile, a two-part towed platform has convenient control, thus reducing the interference of the towed mother ship and real-time detection. If the platform can maintain constant altitude sailing through the controller, the data accuracy in the actual magnetic anomaly detection can be guaranteed. On the basis of a two-part towed platform, a magnetic detection system with constant altitude sailing ability for submarine pipelines was constructed in this study. In addition, experimental verification was conducted. The experimental verification research shows that the constant altitude sailing experiment of the two-part towed platform verifies that the platform has good constant altitude sailing ability in both a hydrostatic environment and the actual marine environment. Meanwhile, the offshore magnetic anomaly detection experiment of submarine pipelines verifies the stable measurement function of the magnetic field and the function of the system to detect magnetic anomaly of submarine pipelines.