Molecules (Jul 2024)

Efficient Transformation of Water Vapor into Hydrogen by Dielectric Barrier Discharge Loaded with Bamboo Carbon Bed Structured by Fibrous Material

  • Hui Xu,
  • Ran Sun,
  • Yujie Tan,
  • Chenxiao Pei,
  • Ruchen Shu,
  • Lijie Song,
  • Ruina Zhang,
  • Chuang Ouyang,
  • Min Xia,
  • Jianyuan Hou,
  • Xinzhong Zhang,
  • Yuan Yuan,
  • Renxi Zhang

DOI
https://doi.org/10.3390/molecules29143273
Journal volume & issue
Vol. 29, no. 14
p. 3273

Abstract

Read online

A new method of efficiently transforming water vapor into hydrogen was investigated by dielectric barrier discharge (DBD) loaded with bamboo carbon bed structured by fibrous material in an argon medium. Hydrogen productivity was measured in three different reactors: a non-loaded DBD (N-DBD), a bamboo carbon (BC) bed DBD (BC-DBD), and a quartz wool (QW)-loaded BC DBD (QC-DBD). The effects of the quality ratio of BC to QW and relative humidity on hydrogen productivity were also investigated in QC-DBD at various flow rates. The reaction process and mechanism were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy, N2 physisorption experiments, infrared spectroscopy, and optical emission spectroscopy. A new reaction pathway was developed by loading BC into the fibrous structured material to activate the reaction molecules and capture the O-containing groups in the DBD reactor. A hydrogen productivity of 17.3 g/kWh was achieved at an applied voltage of 5 kV, flow rate of 4 L/min, and 100% relative humidity (RH) in the QC-DBD with a quality ratio of BC to QW of 3.0.

Keywords