Journal of Water and Environmental Nanotechnology (Jul 2018)
The flexible route for the electrosynthesis of visible light active CdxZn1-xOnanostructures by sequential anodic dissolution of metallic electrodes
Abstract
A flexible route for the electrosynthesis of visible light active CdxZn1-xO nanostructures has been proposed. Various nanostructures were prepared by anodic dissolution in 0.1M Me4NCl by using an applied potential of 15V for 30min. The prepared nanostructures were characterized by diffuse reflectance UV-Vis spectroscopy (DRS), Fourier transforms infrared spectrometry (FT-IR), X-Ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the crystalline structure, morphology, and energy band gap of the products can be finely adjusted only by varying the duty cycle of the anodeswitching. The visible light activity of the obtained nanostructures was investigated using methyl orange as a model organic pollutant. It was found that the proposed method can be used to obtain very effective CdxZn1-xO photocatalysts by fine tuning of the morphology and energy band gap. The prepared photocatalyst retained 80% of its original activity after 5 replicated uses.
Keywords