Redox Biology (Nov 2024)
Physioxia rewires mitochondrial complex composition to protect stem cell viability
- Janice Raabe,
- Ilka Wittig,
- Patrick Laurette,
- Konstantina Stathopoulou,
- Theresa Brand,
- Thomas Schulze,
- Birgit Klampe,
- Ellen Orthey,
- Alfredo Cabrera-Orefice,
- Jana Meisterknecht,
- Ellen Thiemann,
- Sandra D. Laufer,
- Aya Shibamiya,
- Marina Reinsch,
- Sigrid Fuchs,
- Jennifer Kaiser,
- Jiaqi Yang,
- Simonida Zehr,
- Kinga M. Wrona,
- Kristina Lorenz,
- Robert Lukowski,
- Arne Hansen,
- Ralf Gilsbach,
- Ralf P. Brandes,
- Bärbel M. Ulmer,
- Thomas Eschenhagen,
- Friederike Cuello
Affiliations
- Janice Raabe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Ilka Wittig
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany
- Patrick Laurette
- Institute of Experimental Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
- Konstantina Stathopoulou
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Ellen Orthey
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Alfredo Cabrera-Orefice
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
- Jana Meisterknecht
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
- Ellen Thiemann
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Sandra D. Laufer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Aya Shibamiya
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Marina Reinsch
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Sigrid Fuchs
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Jennifer Kaiser
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Jiaqi Yang
- Institute of Pharmacy, Experimental Pharmacology, University Tübingen, 72076 Tübingen, Germany
- Simonida Zehr
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
- Kinga M. Wrona
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
- Robert Lukowski
- Institute of Pharmacy, Experimental Pharmacology, University Tübingen, 72076 Tübingen, Germany
- Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Ralf Gilsbach
- Institute of Experimental Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
- Ralf P. Brandes
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
- Bärbel M. Ulmer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Corresponding author. Institute of Experimental Pharmacology and Toxicology; University Medical Center Hamburg-Eppendorf, Martinistrasse 52; 20246 Hamburg, Germany.
- Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Corresponding author. Institute of Experimental Pharmacology and Toxicology; University Medical Center Hamburg-Eppendorf, Martinistrasse 52; 20246 Hamburg, Germany.
- Journal volume & issue
-
Vol. 77
p. 103352
Abstract
Human induced pluripotent stem cells (hiPSCs) are an invaluable tool to study molecular mechanisms on a human background. Culturing stem cells at an oxygen level different from their microenvironmental niche impacts their viability. To understand this mechanistically, dermal skin fibroblasts of 52 probands were reprogrammed into hiPSCs, followed by either hyperoxic (20 % O2) or physioxic (5 % O2) culture and proteomic profiling. Analysis of chromosomal stability by Giemsa-banding revealed that physioxic -cultured hiPSC clones exhibited less pathological karyotypes than hyperoxic (e.g. 6 % vs. 32 % mosaicism), higher pluripotency as evidenced by higher Stage-Specific Embryonic Antigen 3 positivity, higher glucose consumption and lactate production. Global proteomic analysis demonstrated lower abundance of several subunits of NADH:ubiquinone oxidoreductase (complex I) and an underrepresentation of pathways linked to oxidative phosphorylation and cellular senescence. Accordingly, release of the pro-senescent factor IGFBP3 and β-galactosidase staining were lower in physioxic hiPSCs. RNA- and ATAC-seq profiling revealed a distinct hypoxic transcription factor-binding footprint, amongst others higher expression of the HIF1α-regulated target NDUFA4L2 along with increased chromatin accessibility of the NDUFA4L2 gene locus. While mitochondrial DNA content did not differ between groups, physioxic hiPSCs revealed lower polarized mitochondrial membrane potential, altered mitochondrial network appearance and reduced basal respiration and electron transfer capacity. Blue-native polyacrylamide gel electrophoresis coupled to mass spectrometry of the mitochondrial complexes detected higher abundance of NDUFA4L2 and ATP5IF1 and loss of incorporation into complex IV or V, respectively. Taken together, physioxic culture of hiPSCs improved chromosomal stability, which was associated with downregulation of oxidative phosphorylation and senescence and extensive re-wiring of mitochondrial complex composition.