Spin-Polarized Study of the Structural, Optoelectronic, and Thermoelectric Properties of the Melilite-Type Gd<sub>2</sub>Be<sub>2</sub>GeO<sub>7</sub> Compound
Fafa Chiker,
Najet Baki,
Yasser Abderrahim Khachai,
Houari Khachai,
Redouane Miloua,
Rabah Khenata,
Saad Bin-Omran,
Abdelmadjid Bouhemadou,
Mohammed Benali Kanoun,
Souraya Goumri-Said
Affiliations
Fafa Chiker
Laboratoire d’Etude des Matériaux et Instrumentations Optiques (LEMIO), Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000, Algeria
Najet Baki
Laboratoire d’Etude des Matériaux et Instrumentations Optiques (LEMIO), Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000, Algeria
Yasser Abderrahim Khachai
Condensed Matter and Sustainable Development Laboratory (LMCDD), Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000, Algeria
Houari Khachai
Laboratoire d’Etude des Matériaux et Instrumentations Optiques (LEMIO), Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000, Algeria
Redouane Miloua
Laboratoire d’Elaboration et de Caractérisation des Matériaux (LECM), Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000, Algeria
Rabah Khenata
Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, Mascara 29000, Algeria
Saad Bin-Omran
Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
Abdelmadjid Bouhemadou
Laboratory for Developing New Materials and Their Characterizations, Department of Physics, Faculty of Science, University of Ferhat Abbes-Setif 1, Setif 19000, Algeria
Mohammed Benali Kanoun
Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
Souraya Goumri-Said
College of Science, Physics Department, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
The present work is a theoretical study of the structural and spin-polarized dependent optoelectronic thermoelectric properties of the melilite-typeGd2Be2GeO7 compound, using the full potential linearized augmented plane wave approach in the framework of density functional theory. The predicted structural parameters are in good accordance with the measured counterparts. It is found that the title compound is more stable in the ferromagnetic order than in the non-magnetic order. The calculated band structure using the modified Becke–Johnson potential reveals that the studied compound has a wide bandgap of 3.78 eV. The frequency-dependent linear optical spectra are studied in an energy range expanding from 0 to 30 eV. Finally, the semi classical Boltzmann theory as incorporated in the Boltztrap code is used to study the spin-polarized dependent transport properties. The obtained results show that Gd2Be2GeO7 is a potential candidate for conversion energy device applications.