Molecules (Oct 2019)

Anticancer Indole-Based Chalcones: A Structural and Theoretical Analysis

  • Farid A. Badria,
  • Saied M. Soliman,
  • Saleh Atef,
  • Mohammad Shahidul Islam,
  • Abdullah Mohammed Al-Majid,
  • Necmi Dege,
  • Hazem A. Ghabbour,
  • M. Ali,
  • Fardous F. El-Senduny,
  • Assem Barakat

DOI
https://doi.org/10.3390/molecules24203728
Journal volume & issue
Vol. 24, no. 20
p. 3728

Abstract

Read online

The crystal structures of five new chalcones derived from N-ethyl-3-acetylindole with different substituents were investigated: (E)-3-(4-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3a); (E)-3-(3-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3b); (E)-1-(1-ethyl-1H-indol-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (3c); (E)-1-(1-ethyl-1H-indol-3-yl)-3-mesitylprop-2-en-1-one (3d); and (E)-1-(1-ethyl-1H-indol-3-yl)-3-(furan-2-yl)prop-2-en-1-one (3e). The molecular packing of the studied compounds is controlled mainly by C−H⋅⋅⋅O hydrogen bonds, C−H⋅⋅⋅π interactions, and π···π stacking interactions, which were quantitatively analyzed using Hirshfeld topology analysis. Using density functional theory (DFT) calculations, the order of polarity (3b ˂ 3d ˂ 3e ˂ 3a ˂ 3c) was determined. Several chemical reactivity indices such as the ionization potential (I), electron affinity (A), chemical potential (μ), hardness (η), electrophilicity (ω) and nucleophilicity (N) indices were calculated, and these properties are discussed and compared. In addition, the antiproliferative activity of the five new chalcones was studied.

Keywords