PLoS ONE (Jan 2015)

In Situ Microparticles Loaded with S-Nitrosoglutathione Protect from Stroke.

  • Marianne Parent,
  • Ariane Boudier,
  • Julien Perrin,
  • Claude Vigneron,
  • Philippe Maincent,
  • Nicolas Violle,
  • Jean-François Bisson,
  • Isabelle Lartaud,
  • François Dupuis

DOI
https://doi.org/10.1371/journal.pone.0144659
Journal volume & issue
Vol. 10, no. 12
p. e0144659

Abstract

Read online

Treatment of stroke, especially during the first hours or days, is still lacking. S-nitrosoglutathione (GSNO), a cerebroprotective agent with short life time, may help if administered early with a sustain delivery while avoiding intensive reduction in blood pressure. We developed in situ forming implants (biocompatible biodegradable copolymer) and microparticles (same polymer and solvent emulsified with an external oily phase) of GSNO to lengthen its effects and allow cerebroprotection after a single subcutaneous administration to Wistar rats. Arterial pressure was recorded for 3 days (telemetry, n = 14), whole-blood platelet aggregation up to 13 days (aggregometry, n = 58), and neurological score, cerebral infarct size and edema volume for 2 days after obstruction of the middle cerebral artery by autologous blood clots (n = 30). GSNO-loaded formulations (30 mg/kg) induced a slighter and longer hypotension (-10 vs. -56 ± 6 mmHg mean arterial pressure, 18 h vs. 40 min) than free GSNO at the same dose. The change in pulse pressure (-50%) lasted even up to 42 h for microparticles. GSNO-loaded formulations (30 mg/kg) prevented the transient 24 h hyper-aggregability observed with free GSNO and 7.5 mg/kg-loaded formulations. When injected 2 h after stroke, GSNO-loaded microparticles (30 mg/kg) reduced neurological score at 24 (-62%) and 48 h (-75%) vs. empty microparticles and free GSNO 7.5 mg/kg and, compared to free GSNO, divided infarct size by 10 and edema volume by 8 at 48 h. Corresponding implants reduced infarct size and edema volume by 2.5 to 3 times. The longer (at least 2 days) but slight effects on arterial pressures show sustained delivery of GSNO-loaded formulations (30 mg/kg), which prevent transient platelet hyper-responsiveness and afford cerebroprotection against the consequences of stroke. In conclusion, in situ GSNO-loaded formulations are promising candidates for the treatment of stroke.