Biosensors (Oct 2024)
Infrared Thermography Sensor in the Analysis of Acute Metabolic Stress Response during Race Walking Competition
Abstract
Introduction: Due to the possible impact of the thermoregulatory process on sports performance, it is necessary to explore the existing relationships between kinetic, mechanical, and physiological variables. The objective of this study was to evaluate metabolic stress using thermography in the lower limb after the Spanish Championship 2023 walk. Method: A descriptive study was carried out on national and international race walkers before and after the 2023 Spanish Championships. The participants performed different tests within the same circuit. Five walkers completed the long-distance race of 35 km, four walkers completed the middle-distance race of 20 km and finally, two walkers completed the short-distance race of 10 km. Result: Statistically significant changes were observed in the lower limbs of the walkers after completing the test. We observed a decrease in skin temperature in all the anatomical regions analyzed, except for the back of the leg. More specifically, the decrease was in the hip (−1.92 °C: p = 0.004), quadriceps, hamstrings (−1.23 °C: p = 0.002), and tibia (−1.23 °C: p = 0.030). However, in the posterior region of the leg, a significant increase in temperature was observed (+0.50 °C: p = 0.011) following the competition. Discussion and Conclusions: The findings in this descriptive investigation support the notion that thermography may serve as a useful tool in the acute analysis of muscle functional activation and metabolic response in professional marching athletes. Moreover, the results confirmed that the change in skin temperature is the result of a variation in acute metabolic and functional activation in the lower extremities of race walkers during competition, with infrared thermography representing an instrument capable of detecting such a change in a rapid and non-invasive manner.
Keywords