Cellular Physiology and Biochemistry (Oct 2017)

MicroRNA-30a-5p Inhibits the Growth of Renal Cell Carcinoma by Modulating GRP78 Expression

  • Changlin Wang,
  • Licheng Cai,
  • Jing Liu,
  • Gang Wang,
  • Haoming Li,
  • Xiaoxiong Wang,
  • Wanhai Xu,
  • Minghua Ren,
  • Li Feng,
  • Pinghuang Liu,
  • Cheng Zhang

DOI
https://doi.org/10.1159/000484394
Journal volume & issue
Vol. 43, no. 6
pp. 2405 – 2419

Abstract

Read online

Background/Aims: MiR-30a-5p, a member of the microRNA-30 family (miR-30), is known to function as a tumor suppressor in several different cancers. However, the expression levels, biological function, and underlying mechanisms of miR-30a-5p in renal cell carcinoma (RCC) remain unclear. Glucose-regulated protein78 (GRP78) is a common cancer biomarker and promotes the growth and survival of cancer cells. The expression of GRP78 has been reported to be modulated by miR-30a in neurons. In this study, the expression profile of miR-30a-5p in clear cell renal cell carcinoma (ccRCC) and its effect on ccRCC through regulating GRP78 expression was investigated. Methods: MiR-30a-5p expression was analyzed using bioinformatic software on open microarray datasets from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and confirmed by quantitative RT-PCR (qRT-PCR) in ccRCC cell lines. Cell proliferation was investigated using CCK-8 and cell count assays. Western blotting, immunohistochemistry, luciferase reporter assays, and flow cytometry were employed to investigate the mechanisms of the effect of miR-30a-5p on ccRCC Results: MiR-30a-5p was down-regulated in ccRCC and related to the clinicopathological factors and prognosis of ccRCC. MiR-30a-5p was found to both suppress the growth of ccRCC cells and promote apoptosis of ccRCC cells in vitro. GRP78 was the direct target gene of miR-30a-5p, and the GRP78 expression was inversely correlated with the expression of miR-30a-5p in vivo and in vitro. The functional studies of GRP78 overexpression or knockdown demonstrated that GRP78 promoted proliferation and anti-apoptosis of ccRCC cells, and the oncogenic activity of GRP78 resulting in by miR-30a-5p overexpression. Conclusion: MiR-30a-5p is a bona fide negative regulator of GRP78 expression, and the anti-tumor activity of miR-30a-5p in ccRCC is due at least in part to down-regulating GRP78 expression and modulating the unfolded protein response (UPR) pathway. Thus, miR-30-GRP78 interaction provides a novel therapeutic candidate target in ccRCC treatment.

Keywords