Scientific Reports (Jul 2024)
Coordination analysis and evaluation of population, water resources, economy, and ecosystem coupling in the Tuha region of China
Abstract
Abstract The non-coordination between the socio-economic systems and ecosystems of a region is a crucial obstacle to sustainable development. To reveal the relationships between complex urban systems and achieve the goal of sustainable and coordinated urban development, we constructed a coupling coordination degree model (CCDM) and coupling angle model (CAM) and analyzed the degree of coupling coordination and evolution process among the population, water resources, economy, and ecology (PWEE) system of the Tuha region for 2005–2020. The results indicated that: (1) During 2005–2020, the comprehensive development index (CDI) of the population, water resources and economy subsystems was 0.21–0.65, with the three subsystems portraying an overall increase; the average values of the RSEI at five-year intervals were 0.29, 0.28, 0.28, and 0.26, indicating a downward trend in the environmental quality. (2) The coupling coordination effect of the PWEE system portrayed a low level; the coupling coordination degree (CCD) values were 0.28–0.58, portraying a fluctuating upward trend. The level of CCD increased from low disorder to marginal coordination. (3) The PWEE system’s scissor difference reflects large evolutionary characteristics. The ecological support capacity was not observed until the late stage. We conclude that the PWEE composite system of the region is in a stage of disordered development. These findings significantly bolster the theoretical underpinnings of sustainable development studies, offering essential scientific theories and methodological frameworks for crafting sustainable development policies tailored to urban systems in the Tuha region.
Keywords