Journal of Ovarian Research (Aug 2023)

Neuropeptide Y directly reduced apoptosis of granulosa cells, and the expression of NPY and its receptors in PCOS subjects

  • Yoko Urata,
  • Reza Salehi,
  • Brandon A. Wyse,
  • Sahar Jahangiri,
  • Clifford L. Librach,
  • Chii-Ruey Tzeng,
  • Yutaka Osuga,
  • Benjamin Tsang

DOI
https://doi.org/10.1186/s13048-023-01261-8
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Most women with anovulatory infertility show polycystic ovarian syndrome (PCOS), and androgen excess is known as a key factor involved in pathogenicity of PCOS. However, the mechanism of follicular developmental arrest in PCOS is not completely understood. The reproductive function of Neuropeptide Y (NPY) in the ovary during folliculogenesis was previously reported; NPY function in apoptosis and proliferation of granulosa cells (GCs) is follicular-stage dependent. The objective of this study was to investigate the role of NPY in ovarian follicular development and the pathogenesis of PCOS. Methods To simulate the PCOS phenotype using a rat model, 21-day old Sprague Dawley rats were implanted with dihydrotestosterone (DHT) capsule (83 µg/day) and euthanized after 28 days. mRNA and protein content of NPY and its receptors were assessed in GCs from DHT treated rats using RT-qPCR and Western blot, respectively. Proliferation and apoptosis of GCs was assessed using Ki67- and TUNEL assays. Finally, NPY levels were measured in human follicular fluid (FF) from matched PCOS and non-PCOS patients using ELISA. Results GCs from DHT treated rats (PCOS-GCs) contained significantly less NPY protein and Npy mRNA by 0.16- and 0.56-fold, respectively, and more NPY receptor type 2 and 5 protein by 2.21- and 3.17-fold, respectively, when compared to sham control. Addition of recombinant NPY to PCOS-GCs culture did not alter Ki67-positive but significantly decreased TUNEL-positive cells by 0.65-fold, but not to baseline levels. There was no significant difference in NPY levels in FF between PCOS and non-PCOS subjects. Conclusions These results indicate that DHT modulates expression of NPY and its receptors, NPY decreases DHT-induced GCs apoptosis. That alterations in NPY’s function might be involved in follicular developmental failure of PCOS.

Keywords