Sensors (Jun 2015)
An Indoor Mobile Location Estimator in Mixed Line of Sight/Non-Line of Sight Environments Using Replacement Modified Hidden Markov Models and an Interacting Multiple Model
Abstract
Localization as a technique to solve the complex and challenging problems besetting line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions has recently attracted considerable attention in the wireless sensor network field. This paper proposes a strategy for eliminating NLOS localization errors during calculation of the location of mobile terminals (MTs) in unfamiliar indoor environments. In order to improve the hidden Markov model (HMM), we propose two modified algorithms, namely, modified HMM (M-HMM) and replacement modified HMM (RM-HMM). Further, a hybrid localization algorithm that combines HMM with an interacting multiple model (IMM) is proposed to represent the velocity of mobile nodes. This velocity model is divided into a high-speed and a low-speed model, which means the nodes move at different speeds following the same mobility pattern. Each moving node continually switches its state based on its probability. Consequently, to improve precision, each moving node uses the IMM model to integrate the results from the HMM and its modified forms. Simulation experiments conducted show that our proposed algorithms perform well in both distance estimation and coordinate calculation, with increasing accuracy of localization of the proposed algorithms in the order M-HMM, RM-HMM, and HMM + IMM. The simulations also show that the three algorithms are accurate, stable, and robust.
Keywords