A new series of flexible polyamide (PA) aerogels was synthesized using terephthaloyl chloride (TPC), 2,2′-dimethylbenzidine (DMBZ) and cross-linked with an inexpensive, commercially available tri-isocyanate (Desmodur N3300A) at polymer concentrations of 6–8 wt.% total solids and repeating units, n, from 30 to 60. The cross-linked DMBZ-based polyamide aerogels obtained, after supercritically drying using liquid CO2, had shrinkages of 19–27% with densities ranging from 0.12 g/cm3 to 0.22 g/cm3, porosity and surface areas up to 91% and 309 m2/g, respectively, and modulus values ranging from 20.6 to 109 MPa. Evidence suggests that a higher flexibility could be achieved using DMBZ in the polyamide backbone with N3300A as a cross-linker, when compared to previously reported TPC-mPDA-BTC PA aerogels, N3300A-polyimide aerogels, and N3300-reinforced silica aerogels.