International Journal of Hyperthermia (Dec 2022)
Management of adreno-cortical adenomas using microwave ablation: study of the effects of the fat tissue
Abstract
Background and objectives Adrenocortical neoplasms are the main causes of secondary hypertension and related comorbidities including hypokalemia and cardiovascular diseases. Conventional techniques for the management of this condition are often invasive and not resolutive. Recent studies proposed microwave thermal ablation (MWA) to eradicate adrenocortical adenomas arising in proximity to sensitive structures. This study explores a new MWA approach to selectively direct the electromagnetic energy into the target and shield the surrounding tissues. The new solution relies on the anatomical and dielectric characteristics of the adrenal gland and the surrounding fat capsule.Methods A 3 D model of the adrenal gland is developed, and a cooled microwave applicator is placed parallel to the interface between the fat and adrenal tissue. Numerical simulations are conducted at 2.45 GHz accounting for two energy delivery settings, two orientations of the applicator and blood perfusion of the tissues. Ex vivo and in vivo ablation procedures are conducted on ovine adrenal glands. Histology analysis completes the experimental studies.Results Numerical results show asymmetric ablation profiles in ex vivo and in vivo conditions. The asymmetry ratio is influenced by the procedure settings and orientation of the applicator. Ablation zones obtained experimentally agree with those predicted by the numerical simulations. Histology analysis confirms irreversible cellular changes only in the adrenal tissue close to the applicator.Conclusions The outcomes show that the dielectric contrast between the fat layer and tissue target can be a tool in MWA to shape ablation zones to protect the surrounding structures from excessive temperature increases.
Keywords