Symmetry (Mar 2023)

Synthesis, Molecular, and Supramolecular Structures of Two Azide-Bridged Cd(II) and Cu(II) Coordination Polymers

  • Mezna Saleh Altowyan,
  • Eman M. Fathalla,
  • Jörg H. Albering,
  • Assem Barakat,
  • Morsy A. M. Abu-Youssef,
  • Saied M. Soliman,
  • Ahmed M. A. Badr

DOI
https://doi.org/10.3390/sym15030619
Journal volume & issue
Vol. 15, no. 3
p. 619

Abstract

Read online

Two 1D coordination polymers were synthesized by reaction of two ligands, 2-amino-4-picoline (2A4Pic) and quinoline-6-carboxylic acid (Qu-6-COOH) with two metal (II) nitrate (M = Cd and Cu) in the presence of azide as a linker. The synthesized metal complexes [Cd(2A4Pic)2(N3)2]n; (1) and [Cu(Qu-6-COO)(N3)(H2O)]n; (2) were isolated in single crystals and their X-ray structures revealed a 1D polymeric structure. Due to symmetry considerations, the asymmetric formula is half a [Cd(2A4Pic)2(N3)2] unit for 1 and one [Cu(Qu-6-COO)(N3)(H2O)] unit for 2. In complex 1, the Cd(II) is hexa-coordinated with two 2A4Pic molecules and four μ(1,1) azide units. Hence, the CdN6 coordination environment has a slightly distorted octahedral geometry. In 2, the Cu(II) is hexa-coordinated with three different ligands (Qu-6-COO¯, H2O and μ(1,1) N3¯) where all are connectors between the crystallographically related Cu(II) sites. Additionally, complex 2 distorted CuN2O4 octahedral geometry. In both complexes, the polymer arrays are connected by N…H hydrogen bonds and π–π stacking interactions. Based on Hirshfeld analysis, the percentages of N…H contacts are 43.1 and 27.4% for 1 and 2, respectively, while %C...C are 5.6 and 9.3%, respectively. Analysis of Cu-N, Cu-O, and Cd-N bonds using DFT calculations showed predominantly closed-shell coordination interactions with little covalent characters. Additionally, the negatively charged ligand groups were found to compensate the positive charge of the central metal ion to a larger extent than the electrically neutral ligands.

Keywords