Land (Oct 2023)

Effect of Different Tillage and Residue Management Options on Soil Water Transmission and Mechanical Behavior

  • Vicky Singh,
  • Rajeev Kumar Gupta,
  • M. S. Kahlon,
  • A. S. Toor,
  • K. B. Singh,
  • Nadhir Al-Ansari,
  • Mohamed A. Mattar

DOI
https://doi.org/10.3390/land12101895
Journal volume & issue
Vol. 12, no. 10
p. 1895

Abstract

Read online

Understanding the variability in the mechanical and hydrological soil characteristics resulting from diverse tillage and residue management practices is essential for evaluating the adoption of conservation strategies to preserve soil’s physical well-being. Zero-tillage techniques combined with residue retention or incorporation have gained widespread recognition for their capacity to conserve soil and water resources, reduce energy consumption, and enhance soil quality and environmental sustainability. Nevertheless, the choice of tillage and residue management options may vary depending on the geographical locations and specific soil conditions. To assess the impacts of four distinct tillage and residue management approaches, a two-year experiment (2020–2021 and 2021–2022) was conducted: T1: conventional tillage followed by wheat sowing after the removal of rice straw (CT-RS); T2: zero tillage with wheat sowing using a Happy Seeder while retaining rice straw (ZT+RS); T3: conventional tillage followed by wheat sowing after rice straw incorporation using a reversible mouldboard plough (CT+RS); T4: minimum tillage with wheat sowing using a Super Seeder with rice straw incorporation (MT+RS); the effects were recorded on the physical soil properties. Our findings indicate that zero tillage combined with residue retention (T2) had a positive influence on various physical soil attributes. Notably, significant differences were observed among the tillage and residue management options, particularly in terms of the bulk density with T1 exhibiting the highest values and the lowest being in T2, whereas the soil penetration resistance was lowest in T3 compared to T1. In the case of T3, sandy loam and clay loam soils had the highest measured saturated hydraulic conductivity values, measuring 5.08 and 4.57 cm h−1 and 4.07 and 3.73 cm h−1, respectively. Furthermore, T2 (zero tillage with residue retention) demonstrated the highest mean weight diameter (MWD) and maximum water stable aggregate. These results collectively underscore the positive effects of adopting zero tillage and retaining residue (T2) on soil structure and quality, particularly concerning the mechanical and hydrological soil properties.

Keywords