ECS Sensors Plus (Jan 2023)
Molecular Characterization of Plastic Waste Using Standoff Photothermal Spectroscopy
Abstract
An accurate molecular identification of plastic waste is important in increasing the efficacy of automatic plastic sorting in recycling. However, identification of real-world plastic waste, according to their resin identification code, remains challenging due to the lack of techniques that can provide high molecular selectivity. In this study, a standoff photothermal spectroscopy technique, utilizing a microcantilever, was used for acquiring mid-infrared spectra of real-world plastic waste, including those with additives, surface contaminants, and mixed plastics. Analysis of the standoff spectral data, using Convolutional Neural Network (CNN), showed 100% accuracy in selectively identifying real-world plastic waste according to their respective resin identification codes. Standoff photothermal spectroscopy, together with CNN analysis, offers a promising approach for the selective characterization of waste plastics in Material Recovery Facilities (MRFs).