AIMS Mathematics (Jul 2023)

Regularity results for solutions of micropolar fluid equations in terms of the pressure

  • Ines Ben Omrane,
  • Mourad Ben Slimane ,
  • Sadek Gala,
  • Maria Alessandra Ragusa

DOI
https://doi.org/10.3934/math.20231081
Journal volume & issue
Vol. 8, no. 9
pp. 21208 – 21220

Abstract

Read online

This paper is devoted to investigating regularity criteria for the 3D micropolar fluid equations in terms of pressure in weak Lebesgue space. More precisely, we prove that the weak solution is regular on $ (0, T] $ provided that either the norm $ \left\Vert \pi \right\Vert _{L^{\alpha, \infty }(0, T;L^{\beta, \infty }(\mathbb{R}^{3}))} $ with $ \frac{2}{\alpha }+ \frac{3}{\beta } = 2 $ and $ \frac{3}{2} < \beta < \infty $ or $ \left\Vert \nabla \pi \right\Vert _{L^{\alpha, \infty }(0, T;L^{\beta, \infty }(\mathbb{R} ^{3}))} $ with $ \frac{2}{\alpha }+\frac{3}{\beta } = 3 $ and $ 1 < \beta < \infty $ is sufficiently small.

Keywords