Journal of Advanced Transportation (Jan 2022)

Fixed-Route vs. Demand-Responsive Transport Feeder Services: An Exploratory Study Using an Agent-Based Model

  • Giovanni Calabrò,
  • Michela Le Pira,
  • Nadia Giuffrida,
  • Giuseppe Inturri,
  • Matteo Ignaccolo,
  • Gonçalo H. de A. Correia

DOI
https://doi.org/10.1155/2022/8382754
Journal volume & issue
Vol. 2022

Abstract

Read online

Feeder transport services are fundamental as first and last-mile connectors of mass rapid transit (MRT). They are especially beneficial in low-demand areas where private transport is usually the main transport mode. Besides, the rapid spread of new technologies such as vehicle automation and the shared mobility paradigm gave rise to new mobility-on-demand modes that can dynamically match demand with service supply. In this context, the new generation of real-time demand-responsive transport services can act as on-demand feeders of MRT, but their performance needs to be compared with conventional fixed-route fixed-schedule feeders. This article aims at presenting an agent-based model able to simulate different feeder services and explore the conditions that make a demand-responsive feeder (DRF) service more or less attractive than a fixed-route fixed-schedule feeder (FRF). The parametric simulation environment creates realistic constraints and parameters that are usually not included in analytical models because of high computational complexity. First, we identified the critical demand density representing a switching point between the two services. Once the demand density is fixed, exploratory scenarios are tested by changing the demand spatial distribution and patterns, service area, and service configurations. Main results suggest that the DRF is to be preferred when the demand is spatially concentrated close to the MRT station (e.g., in a TOD-like land-use area) or when station spacing is quite high (e.g., a regional railway service), whereas the FRF performs better when the demand is mainly originated at the MRT station to any other destinations in the service area (e.g., during peak hours). Besides, automated vehicles could play a role in reducing the operator cost if the service is performed with many small vehicles rather than higher-capacity vehicles, even if this would not imply a major benefit gain for the users.