Journal of the Serbian Chemical Society (Jun 2010)
Constituents and antimicrobial activity of the essential oils of six Himalayan Nepeta species
Abstract
The essential oils from six Himalayan Nepeta species, viz. Nepeta leucophylla Benth., Nepeta discolor Royle ex Benth., Nepeta govaniana Benth., Nepeta clarkei Hook. f., Nepeta elliptica Royle ex Benth. and Nepeta erecta Benth., were tested for their in vitro antimicrobial activity against six pathogenic bacterial and two fungal strains. The results showed that Pseudomonas aeruginosa was the most sensitive strain tested to the essential oils of Nepeta species. The essential oils of N. elliptica and N. erecta exhibited the highest activity against P. aeruginosa, followed by the essential oils of N. leucophylla and N. clarkei. The essential oils from N. elliptica and N. erecta were also found to be very effective against Serratia marcescens; while the essential oil from N. leucophylla displayed significant activity against Proteus vulgaris and Staphylococcus aureus. Other bacterial strains displayed variable degree of susceptibility against one or more of the tested essential oils. The essential oil from N. leucophylla also showed the highest antifungal activity against both tested fungal strains, viz. Candida albicans and Trichophyton rubrum, followed by the essential oils from N. clarkei, N. govaniana and N. erecta. Iridodial derivatives, viz. iridodial β-monoenol acetate (25.4 %), dihydroiridodial diacetate (18.2 %) and iridodial dienol diacetate (7.8 %) were identified as the major constituents of N. leucophylla, while the essential oils from N. elliptica and N. erecta were dominated by (7R)-trans,trans nepetalactone (83.4 %) and isoiri-domyrmecin (66.7 %), respectively. The essential oil of N. discolor was characterized by 1,8-cineole (25.5 %) and β-caryophyllene (18.6 %), while N. clarkei was dominated by β-sesquiphellandrene (22.0 %) and germacrene D (13.0 %). Isoiridomyrmecin (35.2 %) and pregeijerene (20.7 %) were identified as the major constituents of N. govaniana. In general the Nepeta species containing constituents with an iridoid or lactone skeleton were found to have the greater antagonistic activity against most of the microbial strains as compared to those containing regular terpene constituents.