Asian Journal of Atmospheric Environment (Sep 2018)

Spatial-temporal Assessment and Mapping of the Air Quality and Noise Pollution in a Sub-area Local Environment inside the Center of a Latin American Megacity: Universidad Nacional de Colombia - Bogotá Campus

  • Guevara Luna Fredy Alejandro,
  • Guevara Luna Marco Andrés,
  • Rojas Roa Néstor Yezid

DOI
https://doi.org/10.5572/ajae.2018.12.3.232
Journal volume & issue
Vol. 12, no. 3
pp. 232 – 243

Abstract

Read online

The construction, development and maintenance of an economically, environmentally and socially sustainable campus involves the integration of measuring tools and technical information that invites and encourages the community to know the actual state to generate positive actions for reducing the negative impacts over the local environment. At the Universidad Nacional de Colombia - Campus Bogotá, a public area with daily traffic of more than 25000 people, the Environmental Management Bureau has committed with the monitoring of the noise pollution and air quality, as support to the campaigns aiming to reduce the pollutant emissions associated to the student’s activities and campus operation. The target of this study is based in the implementation of mobile air quality and sonometry monitoring equipment, the mapping of the actual air quality and noise pollution inside the university campus as a novel methodology for a sub-area inside a megacity. This results and mapping are proposed as planning tool for the institution administrative sections. A mobile Kunak Air & OPC air monitoring station with the capability to measure particulate matter PM10, PM2.5, Ozone (O3), Sulfur Oxide (SO2), Carbon Monoxide (CO) and Nitrogen Oxide (NO2) as well as Temperature, Relative Humidity and Latitude and Longitude coordinates for the data georeferenciation; and a sonometer Cirrus 162B Class 2 were used to perform the measurements. The measurements took place in conditions of academic activity and without it, with the aim of identify the impacts generated by the campus operation. Using the free code geographical information software QGIS 2.18, the maps of each variable measured were developed, and the impacts generated by the operation of the campus were identified qualitative and quantitively. For the measured variables, an increase of around 21% for the LAeq noise level and around 80% to 90% for air pollution were detected during the operation period.

Keywords