Journal of Global Antimicrobial Resistance (Sep 2023)
Evaluation of genetic mutations associated with phenotypic resistance to fluoroquinolones, bedaquiline, and linezolid in clinical Mycobacterium tuberculosis: A systematic review and meta-analysis
Abstract
ABSTRACT: Objectives: The aim of the study was to update the classification of drugs used in multidrug-resistant tuberculosis (MDR-TB) regimens. Group A drugs (fluoroquinolones, bedaquiline (BDQ), and linezolid (LZD)) are crucial drugs for the control of MDR-TB. Molecular drug resistance assays could facilitate the effective use of Group A drugs. Methods: We summarised the evidence implicating specific genetic mutations in resistance to Group A drugs. We searched PubMed, Embase, MEDLINE, and the Cochrane Library for studies published from the inception of each database until July 1, 2022. Using a random-effects model, we calculated the odds ratios and 95% confidence intervals as our measures of association. Results: A total of 5001 clinical isolates were included in 47 studies. Mutations in gyrA A90V, D94G, D94N, and D94Y were significantly associated with an increased risk of a levofloxacin (LFX)-resistant phenotype. In addition, mutations in gyrA G88C, A90V, D94G, D94H, D94N, and D94Y were significantly associated with an increased risk of a moxifloxacin (MFX)-resistant phenotype. In only one study, the majority of gene loci (n = 126, 90.65%) in BDQ-resistant isolates were observed to have unique mutations in atpE, Rv0678, mmpL5, pepQ, and Rv1979c. The most common mutations occurred at four sites in the rrl gene (g2061t, g2270c, g2270t, and g2814t) and at one site in rplC (C154R) in LZD-resistant isolates. Our meta-analysis demonstrated that there were no mutations associated with BDQ- or LZD-resistant phenotypes. Conclusion: The mutations detected by rapid molecular assay were correlated with phenotypic resistance to LFX and MFX. The absence of mutation-phenotype associations for BDQ and LZD hindered the development of a rapid molecular assay.