International Journal of Infectious Diseases (Aug 2023)

Longitudinal humoral and cell-mediated immune responses in a population-based cohort in Zurich, Switzerland between March and June 2022 - evidence for protection against Omicron SARS-CoV-2 infection by neutralizing antibodies and spike-specific T-cell responses

  • Kyra Denise Zens,
  • Daniel Llanas-Cornejo,
  • Dominik Menges,
  • Jan Sven Fehr,
  • Christian Münz,
  • Milo Alan Puhan,
  • Anja Frei

Journal volume & issue
Vol. 133
pp. 18 – 26

Abstract

Read online

Objectives: The correlate(s) of protection against SARS-CoV-2 remain incompletely defined. Additional information regarding the combinations of antibody and T cell-mediated immunity which can protect against (re)infection is needed. Methods: We conducted a population-based, longitudinal cohort study including 1044 individuals of varying SARS-CoV-2 vaccination and infection statuses. We assessed spike (S)- and nucleocapsid (N)-immunoglobulin(Ig)G and wildtype, Delta, and Omicron-neutralizing antibody (N-Ab) activity. In a subset of 328 individuals, we evaluated S, membrane (M), and N-specific T cells. Three months later, we reassessed Ab (n = 964) and T cell (n = 141) responses and evaluated factors associated with protection from (re)infection. Results: At the study start, >98% of participants were S-IgG seropositive. N-IgG and M/N-T-cell responses increased over time, indicating viral (re)exposure, despite existing S-IgG. Compared to N-IgG, M/N-T cells were a more sensitive measure of viral exposure. High N-IgG titers, Omicron-N-Ab activity, and S-specific-T-cell responses were all associated with a reduced likelihood of (re)infection over time. Conclusion: Population-level SARS-CoV-2 immunity is S-IgG-dominated, but heterogeneous. M/N-T-cell responses can distinguish previous infection from vaccination, and monitoring a combination of N-IgG, Omicron-N-Ab, and S-T-cell responses may help estimate protection against SARS-CoV-2 (re)infection.

Keywords