Mathematics (Feb 2021)
Optimizing a Sustainable Supply Chain Inventory Model for Controllable Deterioration and Emission Rates in a Greenhouse Farm
Abstract
This study investigated how greenhouse managers should invest in preservation and green technologies and introduce trade credit to increase their profits. We propose a supply chain inventory model with controllable deterioration and emission rates under payment schemes for shortage and surplus, where demand depends on price and trade credit. Carbon emissions and deterioration are factors affecting global warming, and many greenhouse managers have focused on reducing carbon emissions. Carbon caps and tax-based incentives have been used in many greenhouses to achieve such reduction. Because of the importance of reducing carbon emissions for developing a green supply chain, various studies have investigated how firms deal with carbon emission constraints. In this continuation, we have used green technology to curb the excessive emissions from the environment or make it clean from CO2. In a seller–buyer relationship, the seller can offer a trade credit period to the buyer to manage stock and stimulate demand. Deterioration may become a challenge for most firms as they are under time constraints control, and preservation technology could help. This study proposes three novel inventory strategies for a sustainable supply chain (full backorder, partial backorder, and no backorder), linking all these important issues. The solution optimizes total annual profit for inventory shortage or surplus. We conducted a numerical study with three examples to evaluate the model’s authenticity and effectiveness and demonstrate the solution technique. The deterioration and emission rates can be included in a trade credit policy to increase greenhouse profits. The results suggest that greenhouse managers could apply the proposed model to manage real-world situations.
Keywords