Biosensors (Jul 2022)

Asymmetric Mach–Zehnder Interferometric Biosensing for Quantitative and Sensitive Multiplex Detection of Anti-SARS-CoV-2 Antibodies in Human Plasma

  • Geert Besselink,
  • Anke Schütz-Trilling,
  • Janneke Veerbeek,
  • Michelle Verbruggen,
  • Adriaan van der Meer,
  • Rens Schonenberg,
  • Henk Dam,
  • Kevin Evers,
  • Ernst Lindhout,
  • Anja Garritsen,
  • Aart van Amerongen,
  • Wout Knoben,
  • Luc Scheres

DOI
https://doi.org/10.3390/bios12080553
Journal volume & issue
Vol. 12, no. 8
p. 553

Abstract

Read online

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has once more emphasized the urgent need for accurate and fast point-of-care (POC) diagnostics for outbreak control and prevention. The main challenge in the development of POC in vitro diagnostics (IVD) is to combine a short time to result with a high sensitivity, and to keep the testing cost-effective. In this respect, sensors based on photonic integrated circuits (PICs) may offer advantages as they have features such as a high analytical sensitivity, capability for multiplexing, ease of miniaturization, and the potential for high-volume manufacturing. One special type of PIC sensor is the asymmetric Mach–Zehnder Interferometer (aMZI), which is characterized by a high and tunable analytical sensitivity. The current work describes the application of an aMZI-based biosensor platform for sensitive and multiplex detection of anti-SARS-CoV-2 antibodies in human plasma samples using the spike protein (SP), the receptor-binding domain (RBD), and the nucleocapsid protein (NP) as target antigens. The results are in good agreement with several CE-IVD marked reference methods and demonstrate the potential of the aMZI biosensor technology for further development into a photonic IVD platform.

Keywords