Mathematical Biosciences and Engineering (Sep 2023)
An improved genetic algorithm with dynamic neighborhood search for job shop scheduling problem
Abstract
The job shop scheduling problem (JSP) has consistently garnered significant attention. This paper introduces an improved genetic algorithm (IGA) with dynamic neighborhood search to tackle job shop scheduling problems with the objective of minimization the makespan. An inserted operation based on idle time is introduced during the decoding phase. An improved POX crossover operator is presented. A novel mutation operation is designed for searching neighborhood solutions. A new genetic recombination strategy based on a dynamic gene bank is provided. The elite retention strategy is presented. Several benchmarks are used to evaluate the algorithm's performance, and the computational results demonstrate that IGA delivers promising and competitive outcomes for the considered JSP.
Keywords