Applied Sciences (Apr 2019)

Development of Heat Dissipation Multilayer Media for Volumetric Magnetic Hologram Memory

  • Yuichi Nakamura,
  • Pang Boey Lim,
  • Taichi Goto,
  • Hironaga Uchida,
  • Mitsuteru Inoue

DOI
https://doi.org/10.3390/app9091738
Journal volume & issue
Vol. 9, no. 9
p. 1738

Abstract

Read online

Holographic memory is a strong candidate for next-generation optical storage, featuring high recording densities and data transfer rates, and magnetic hologram memory using a magnetic garnet, as the recording material is expected to be used as a rewritable and stable storage technology. However, the diffraction efficiency of magnetic holography depending on the Faraday rotation angle is insufficiently high for actual storage devices. To increase the diffraction efficiency, it is important to record deep magnetic fringes, whereas it is necessary to suppress the merging of fringes owing to heat diffusion near the medium surface. In this work, we investigated the recording process of magnetic holograms in detail with experiments and numerical simulations, and developed a multilayer media with transparent heat dissipation layers to record deep and clear magnetic holograms by controlling the heat diffusion generated during the thermomagnetic recording process. To suppress lateral heat diffusion near the medium surface, we designed and fabricated a multilayer magnetic medium in which the recording magnetic layers are discrete in a film, approximately 12-µm thick. This medium exhibited diffraction efficiency higher than that of the single-layer medium, and error-free recording and reconstruction were achieved using the magnetic assist technique.

Keywords