Phytopathology Research (Jul 2021)
Transcription factor UvMsn2 is important for vegetative growth, conidiogenesis, stress response, mitochondrial morphology and pathogenicity in the rice false smut fungus Ustilaginoidea virens
Abstract
Abstract Transcription factors (TFs) play critical roles in the control of development and pathogenicity of phytopathogens by directly or indirectly regulating the expression of downstream genes. Here, we identified and characterized a zinc finger TF UvMsn2 in Ustilaginoidea virens, a homolog of MoMsn2 from the rice blast fungus. Heterogenous complementation assay revealed that UvMsn2 fully restored the defects of the ∆Momsn2 mutant in vegetative growth, conidiation and pathogenicity. Deletion of UvMsn2 in U. virens led to a reduction of the pathogen in vegetative growth, aerial hyphae and conidiation. Additionally, the ∆Uvmsn2 mutant displayed defects in conidial morphology and germination, as well as mitochondrial morphology. Pathogenicity and toxicity assays revealed that the ∆Uvmsn2 mutant was non-pathogenic and less inhibitory to rice seed germination. The ∆Uvmsn2 mutant showed different sensitivity to various stresses. Further microscopic examination found that UvMsn2 was localized in both cytosol and nucleus, and translocated from cytosol to nucleus under the treatment of NaCl. Our results demonstrate that UvMsn2 is a critical TF that regulates the vegetative growth, conidiogenesis, stress response, mitochondrial morphology and virulence in the rice false smut fungus.
Keywords