Earth and Space Science (Nov 2023)
On the Role of Mild Substorms and Enhanced Hall Conductivity in the Plasma Irregularities Onset and Zonal Drift Reversals: Experimental Evidence at Distinct Longitudes Over South America
Abstract
Abstract The 14‐panel Advanced Modular Incoherent Scatter Radar (AMISR‐14) system deployed at Jicamarca observed equatorial spread F plumes on two consecutive nights under unfavorable seasonal and solar flux conditions during a period that can be categorized as geomagnetically quiet. The AMISR‐14 capability of observing in multiple pointing directions allowed the characterization of the irregularity zonal drifts revealing that, in addition to their atypical occurrence, the zonal drifts of these plumes/irregularities also presented distinct patterns from one night to another, reversing from east to west on the second night. This work addresses two main subjects: (a) the mechanisms that may have led to the generation of these irregularities, despite the unfavorable conditions, and (b) the mechanisms that possibly led to the reversal (east‐to‐west) in the zonal plasma drift on the second night. To do so a multi‐instrumented and multi‐location investigation was performed. The results indicate the occurrence of simultaneous spread‐F events over the Peruvian and the Brazilian regions, evidencing a non‐local process favoring the development of the irregularities. The results also suggest that, even under very mild geomagnetic perturbation conditions, the recurring penetration of electric fields in the equatorial ionosphere can occur promptly, modifying the equatorial electrodynamics and providing favorable conditions for the plume development. Moreover, the results confirm that the eastward penetration electric fields, combined with the upsurge of Hall conductivity in the nighttime typically associated with the presence of sporadic‐E layers, are likely to be the mechanism leading to the reversal in the irregularity zonal drifts over these regions.
Keywords