Atmospheric Chemistry and Physics (Dec 2019)
The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET
- H. Baars,
- A. Ansmann,
- K. Ohneiser,
- M. Haarig,
- R. Engelmann,
- D. Althausen,
- I. Hanssen,
- M. Gausa,
- A. Pietruczuk,
- A. Szkop,
- I. S. Stachlewska,
- D. Wang,
- J. Reichardt,
- A. Skupin,
- I. Mattis,
- T. Trickl,
- H. Vogelmann,
- F. Navas-Guzmán,
- A. Haefele,
- K. Acheson,
- A. A. Ruth,
- B. Tatarov,
- D. Müller,
- Q. Hu,
- T. Podvin,
- P. Goloub,
- I. Veselovskii,
- C. Pietras,
- M. Haeffelin,
- P. Fréville,
- M. Sicard,
- M. Sicard,
- A. Comerón,
- A. J. Fernández García,
- F. Molero Menéndez,
- C. Córdoba-Jabonero,
- J. L. Guerrero-Rascado,
- L. Alados-Arboledas,
- D. Bortoli,
- D. Bortoli,
- M. J. Costa,
- M. J. Costa,
- D. Dionisi,
- G. L. Liberti,
- X. Wang,
- A. Sannino,
- N. Papagiannopoulos,
- A. Boselli,
- L. Mona,
- G. D'Amico,
- S. Romano,
- M. R. Perrone,
- L. Belegante,
- D. Nicolae,
- I. Grigorov,
- A. Gialitaki,
- V. Amiridis,
- O. Soupiona,
- A. Papayannis,
- R.-E. Mamouri,
- A. Nisantzi,
- B. Heese,
- J. Hofer,
- Y. Y. Schechner,
- U. Wandinger,
- G. Pappalardo
Affiliations
- H. Baars
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- A. Ansmann
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- K. Ohneiser
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- M. Haarig
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- R. Engelmann
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- D. Althausen
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- I. Hanssen
- Andøya Space Center, Andenes, Norway
- M. Gausa
- Andøya Space Center, Andenes, Norway
- A. Pietruczuk
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
- A. Szkop
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
- I. S. Stachlewska
- Faculty of Physics, University of Warsaw, Warsaw, Poland
- D. Wang
- Faculty of Physics, University of Warsaw, Warsaw, Poland
- J. Reichardt
- Meteorological Observatory Lindenberg, Deutscher Wetterdienst, Tauche, Germany
- A. Skupin
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- I. Mattis
- Meteorological Observatory Hohenpeissenberg, Deutscher Wetterdienst, Hohenpeissenberg, Germany
- T. Trickl
- IMK-IFU, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- H. Vogelmann
- IMK-IFU, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- F. Navas-Guzmán
- Federal Office of Meteorology and Climatology, MeteoSwiss, Payerne, Switzerland
- A. Haefele
- Federal Office of Meteorology and Climatology, MeteoSwiss, Payerne, Switzerland
- K. Acheson
- Physics Department & Environmental Research Institute, University College Cork, Cork, Ireland
- A. A. Ruth
- Physics Department & Environmental Research Institute, University College Cork, Cork, Ireland
- B. Tatarov
- School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, UK
- D. Müller
- School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, UK
- Q. Hu
- Laboratoire d'Optique Atmosphérique (LOA), UMR 8518 CNRS, Université de Lille, Lille, France
- T. Podvin
- Laboratoire d'Optique Atmosphérique (LOA), UMR 8518 CNRS, Université de Lille, Lille, France
- P. Goloub
- Laboratoire d'Optique Atmosphérique (LOA), UMR 8518 CNRS, Université de Lille, Lille, France
- I. Veselovskii
- Physics Instrumentation Center of General Physics Institute, Moscow, Russia
- C. Pietras
- Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, École Polytechnique, Palaiseau, France
- M. Haeffelin
- Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, École Polytechnique, Palaiseau, France
- P. Fréville
- Observatoire de Physique du Globe, Laboratoire de Météorologie Physique, Clermont-Ferrand, France
- M. Sicard
- CommSensLab, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain
- M. Sicard
- CTE-CRAE/IEEC, Universitat Politècnica de Catalunya, Barcelona, Spain
- A. Comerón
- CommSensLab, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain
- A. J. Fernández García
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Department of Environment, Madrid, Spain
- F. Molero Menéndez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Department of Environment, Madrid, Spain
- C. Córdoba-Jabonero
- Atmospheric Research and Instrumentation Branch, Instituto Nacional de Técnica Aeroespacial, El Arenosillo, Huelva, Spain
- J. L. Guerrero-Rascado
- Andalusian Institute for Earth System Research and University of Granada, Granada, Spain
- L. Alados-Arboledas
- Andalusian Institute for Earth System Research and University of Granada, Granada, Spain
- D. Bortoli
- Instituto Ciências da Terra, Universidade de Évora, Évora, Portugal
- D. Bortoli
- Departamento de Física, Universidade de Évora, Évora, Portugal
- M. J. Costa
- Instituto Ciências da Terra, Universidade de Évora, Évora, Portugal
- M. J. Costa
- Departamento de Física, Universidade de Évora, Évora, Portugal
- D. Dionisi
- Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche, Rome, Italy
- G. L. Liberti
- Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche, Rome, Italy
- X. Wang
- Istituto Superconduttori, Materiali Innovativi e Dispositivi, Consiglio Nazionale delle Ricerche, Naples, Italy
- A. Sannino
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Naples, Italy
- N. Papagiannopoulos
- Istituto di Metodologie per l'Analisi Ambientale, Consiglio Nazionale delle Ricerche, Potenza, Italy
- A. Boselli
- Istituto di Metodologie per l'Analisi Ambientale, Consiglio Nazionale delle Ricerche, Potenza, Italy
- L. Mona
- Istituto di Metodologie per l'Analisi Ambientale, Consiglio Nazionale delle Ricerche, Potenza, Italy
- G. D'Amico
- Istituto di Metodologie per l'Analisi Ambientale, Consiglio Nazionale delle Ricerche, Potenza, Italy
- S. Romano
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia and Università del Salento, Lecce, Italy
- M. R. Perrone
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia and Università del Salento, Lecce, Italy
- L. Belegante
- National Institute of Research and Development for Optoelectronics, Magurele, Ilfov, Romania
- D. Nicolae
- National Institute of Research and Development for Optoelectronics, Magurele, Ilfov, Romania
- I. Grigorov
- Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
- A. Gialitaki
- IAASARS, National Observatory of Athens, Athens, Greece
- V. Amiridis
- IAASARS, National Observatory of Athens, Athens, Greece
- O. Soupiona
- Laser Remote Sensing Unit (LRSU), Physics Department, National Technical University of Athens, Zografou, Greece
- A. Papayannis
- Laser Remote Sensing Unit (LRSU), Physics Department, National Technical University of Athens, Zografou, Greece
- R.-E. Mamouri
- Eratosthenes Research Centre, Department of Civil Engineering and Geomatics, Cyprus University of Technology, Limassol, Cyprus
- A. Nisantzi
- Eratosthenes Research Centre, Department of Civil Engineering and Geomatics, Cyprus University of Technology, Limassol, Cyprus
- B. Heese
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- J. Hofer
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- Y. Y. Schechner
- Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
- U. Wandinger
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- G. Pappalardo
- Istituto di Metodologie per l'Analisi Ambientale, Consiglio Nazionale delle Ricerche, Potenza, Italy
- DOI
- https://doi.org/10.5194/acp-19-15183-2019
- Journal volume & issue
-
Vol. 19
pp. 15183 – 15198
Abstract
Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm–pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22–23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21–23 August 2017 to 0.005–0.03 until 5–10 September and was mainly 0.003–0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001–0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50–200 Mm−1 until the beginning of September and on the order of 1 Mm−1 (0.5–5 Mm−1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05–0.5 µg m−3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50–500 L−1 until the first days in September and afterwards 5–50 L−1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of −55 ∘C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15–0.25 (August–September) to values of 0.05–0.10 (October–November) and < 0.05 (December–January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32–35∘ N, that ascended from heights of about 18–19 to 22–23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.