AIP Advances (Nov 2016)

Probing the charge recombination in rGO decorated mixed phase (anatase-rutile) TiO2 multi-leg nanotubes

  • Y. Rambabu,
  • Manu Jaiswal,
  • Somnath C. Roy

DOI
https://doi.org/10.1063/1.4967387
Journal volume & issue
Vol. 6, no. 11
pp. 115010 – 115010-9

Abstract

Read online

Recombination of photo-generated charges is one of the most significant challenges in designing efficient photo-anode for photo electrochemical water oxidation. In the case of TiO2, mixed phase (anatase-rutile) junctions often shown to be more effective in suppressing electron-hole recombination compared to a single (anatase or rutile) phase. Here, we report the study of bulk and surface recombination process in TiO2 multi-leg nanotube (MLNTs) anatase-rutile (A-R) junctions decorated with reduced graphene oxide (rGO) layers, through an analysis of the photo-current and impedance characteristics. To quantify the charge transport/transfer process involved in these junctions, holes arriving at the interface of semiconductor/electrolyte were collected by adding H2O2 to the electrolyte. This enabled us to interpret the bulk and surface recombination process involved in anatase/rutile/rGO junctions for photo-electrochemical water oxidation. We correlated this quantification to the electrochemical impedance spectroscopy (EIS) measurements, and showed that in anatase/rutile junction the increase in PEC performance was due to suppression in electron-hole recombination rate at the surface states that effectively enhances the hole transfer rate to the electrolyte. On the other hand, in rGO wrapped A-R MLNTs junction it was due to both phenomenon i.e decrease in bulk recombination rate as well as increase in hole transfer rate to the electrolyte at the semiconductor/electrolyte interface.