Agronomy (Nov 2023)

The <i>Purple leaf</i> (<i>Pl</i>) Alleles, <i>Pl<sup>w</sup></i> and <i>Pl<sup>i</sup></i>, Regulate Leaf Color Development Independently from the <i>Pb</i> Gene of <i>Purple pericarp</i> (<i>Prp</i>) in Rice

  • Sang Gu Kang,
  • Kyung Eun Lee,
  • Jegeun Cho,
  • Jeong Wook Lee,
  • Geum Sook Do,
  • Mohammad Nurul Matin

DOI
https://doi.org/10.3390/agronomy13112845
Journal volume & issue
Vol. 13, no. 11
p. 2845

Abstract

Read online

Color development in various rice organs results from the complementary expression of genes involved in anthocyanin biosynthesis. The Purple pericarp (Prp) trait and the Purple leaf (Pl) trait both display epistasis, relying on the complement of the Pb and Pp genes for pericarp coloration and the Pl and Pp genes for leaf coloration, respectively. However, there is still genetic uncertainty in identifying the genes responsible for the various color expressions and intensities of rice grain pericarp and leaves. In this study, we characterized the inheritance patterns of color development and the mode of anthocyanin pigments in rice by crossing two parental mutant lines. YUM051, exhibiting dark purple leaves (Plw) and purple pericarp (Prp), was crossed with YUM144, which displayed light purple leaves (Pli) and a white pericarp (prp). The F1 plants exhibited dark purple leaves with purple pericarps, indicating the dominant nature of the purple leaf (Pl) and purple pericarp (Prp) traits. The rice Prp traits display a complementary interaction, reflected in a 9:7 ratio of purple to white pericarp. However, the Prp trait followed Mendelian segregation with a 3:1 ratio of purple to white pericarp in this cross, indicating homozygous dominant Pp alleles in both parental plants. Meanwhile, the segregation of the purple leaf color in the F2 generation of this cross followed complementary inheritance, exhibiting a 9:7 segregation ratio between purple leaves and greenish leaves with purple leaf margins. Moreover, the co-segregation of Prp and Pl traits in the cross between YUM051 (Plw) and YUM144 (Pli) plants did not adhere to the Mendelian 9:3:3:1 independent assortment ratio, confirming that the Pl gene and Pb gene are linked on the same chromosome. Cyanidin-3-O-glucoside (C3G) was detected in the leaves of all progeny resulting from the Plw and Pli cross. However, C3G was exclusively identified in the seeds of offspring carrying the dominant Pb gene. Therefore, the Plw and Pli alleles are Pl genes responsible for purple leaf color, while the Pb gene is responsible for purple pericarp color in rice; these genes function independently of each other.

Keywords