Asian Journal of Urology (Jan 2023)
A method for reducing thermal injury during the ureteroscopic holmium laser lithotripsy
Abstract
Objective: Many studies have demonstrated the heat effect from the holmium laser lithotripsy can cause persistent thermal injury to the ureter. The purpose of this study was to elucidate the use of a modified ureteral catheter with appropriate firing and irrigation to reduce the thermal injury to the “ureter” during the ureteroscopic holmium laser lithotripsy in vitro. Methods: An in vitro lithotripsy was performed using a modified catheter (5 Fr) as the entrance for the irrigation and the holmium laser fiber while using the remaining space in the ureteroscopic channel as an outlet. Different laser power settings (10 W, 20 W, and 30 W) with various firing times (3 s, 5 s, and 10 s) and rates of irrigation (15 mL/min, 20 mL/min, and 30 mL/min) were applied in the experiment. Temperature changes in the “ureter” were recorded with a thermometer during and after the lithotripsy. Results: During the lithotripsy, the local highest mean temperature was 60.3 °C and the lowest mean temperature was 26.7 °C. When the power was set to 10 w, the temperature was maintained below 43 °C regardless of laser firing time or irrigation flow. Regardless of the power or firing time selected, the temperature was below 43 °C at the rate of 30 mL/min. There was a significant difference in temperature decrease when continuous 3 s drainage after continuous firing (3 s, 5 s, or 10 s) compared to with not drainage (p<0.05) except for two conditions of 0.5 J×20 Hz, 30 mL/min, firing 5 s, and 1.0 J×10 Hz, 30 mL/min, firing 5 s. Conclusion: Our modified catheter with timely drainage reducing hot irrigation may significantly reduce the local thermal injury effect, especially along with the special interrupted-time firing setting during the simulated holmium laser procedure.