Remote Sensing (Apr 2024)
Enhancing Soil Moisture Active–Passive Estimates with Soil Moisture Active–Passive Reflectometer Data Using Graph Signal Processing
Abstract
The Soil Moisture Active–Passive (SMAP) mission has greatly contributed to the use of remote sensing technologies for monitoring the Earth’s land surface and estimating geophysical parameters that influence the climate system. Since the SMAP mission switched its radar receiver to allow the reception of Global Positioning System (GPS) signals, Global Navigation Satellite System Reflectometry (GNSS-R) configuration has been enabled, providing full polarimetric forward scattering measurements of the Earth’s surface, also known as SMAP Reflectometry or SMAP-R. Polarimetric GNSS-R is beneficial for sensing land surface properties, especially for more accurate estimations of soil moisture (SM) in densely vegetated areas. In this study, we explore the opportunity to enhance SMAP mission soil moisture estimates using reflected GNSS signals. We achieve this by interpolating the sparse reflectivity data with terrain information to disaggregate radiometer brightness temperatures. Our main objective is to present a novel algorithm based on Graph Signal Processing (GSP) that uses reflectometry data to enhance SMAP radiometer observations and ultimately improve SM retrievals. By implementing methods from the GSP field, we formulate the reflectivity interpolation problem as a signal reconstruction on a graph, where the weights of the edges between the nodes are chosen as a function of geophysical information. Subsequently, using the retrieved reflectivity maps, we increase the resolution of the brightness temperature data, leading to an improvement in the SM estimates. Initial findings indicate that our GSP method presents a promising alternative for analyzing sparse remote sensing observations, leveraging Earth’s surface geophysical information. This approach results in a notable improvement, with a reduced Root Mean Square Error (RMSE) of 11.8% compared to SMAP data and a reduction in unbiased RMSE (uRMSE) by 14.7% over vegetated areas.
Keywords