Insects (Apr 2024)

The <i>Bombyx mori singed</i> Gene Is Involved in the High-Temperature Resistance of Silkworms

  • Zhenye Liu,
  • Cong Li,
  • Wenyu Yang,
  • Qiao Wu,
  • Wenfu Xiao,
  • Yan Zhu,
  • Qiongqiong Wei,
  • Zhanqi Dong,
  • Guizheng Zhang,
  • Cheng Lu,
  • Minhui Pan,
  • Peng Chen

DOI
https://doi.org/10.3390/insects15040264
Journal volume & issue
Vol. 15, no. 4
p. 264

Abstract

Read online

Temperature is an important factor in the growth, development, survival, and reproduction of organisms. The high-temperature resistance mechanism of insects may be significant for use in the prevention and control of insect pests. The silkworm, Bombyx mori, is an important Lepidoptera model species for studies on pest control in agriculture and forestry. We identified a gene in B. mori, the B. mori singed (Bmsn) gene, which is involved in the high-temperature resistance of silkworms. Sn proteins are highly conserved among species in many taxonomic groups. The overexpression of the Bmsn gene promoted the proliferation of silkworm cells, reduced oxidation, and reduced the accumulation of reactive oxygen species under stress. Interfering with the Bmsn gene had the opposite result. We constructed a transgenic B. mori strain that overexpressed the Bmsn gene. The physiological traits of the transgenic strain were significantly improved, and it had stronger high-temperature resistance. The Bmsn gene is involved in the process by which fat bodies respond to high-temperature stress. These findings provide insights into the mechanism of high-temperature resistance of insects and offer a new perspective on agricultural and forestry pest control.

Keywords