Plants (Feb 2024)

A Better Fruit Quality of Grafted Blueberry Than Own-Rooted Blueberry Is Linked to Its Anatomy

  • Bo Zhu,
  • Peipei Guo,
  • Shuangshuang Wu,
  • Qingjing Yang,
  • Feng He,
  • Xuan Gao,
  • Ya Zhang,
  • Jiaxin Xiao

DOI
https://doi.org/10.3390/plants13050625
Journal volume & issue
Vol. 13, no. 5
p. 625

Abstract

Read online

To further clarify the impact of different rootstocks in grafted blueberry, fruit quality, mineral contents, and leaf gas exchange were investigated in ‘O’Neal’ blueberry (Vaccinium corymbosum) grafted onto ‘Anna’ (V. corymbosum) (AO), ‘Sharpblue’ (V. corymbosum) (SO), ‘Baldwin’ (V. virgatum) (BO), ‘Plolific’ (V. virgatum) (PO), and ‘Tifblue’ (V. virgatum) (TO) rootstocks and own-rooted ‘O’Neal’ (NO), and differences in anatomic structures and drought resistance were determined in AO, TO, and NO. The findings revealed that fruit quality in TO and PO was excellent, that of BO and SO was good, and that of AO and NO was medium. ‘Tifblue’ and ‘Plolific’ rootstocks significantly increased the levels of leaf phosphorus and net photosynthetic rate of ‘O’Neal’, accompanied by a synchronous increase in their transpiration rates, stomatal conductance, and intercellular CO2. Additionally, the comprehensive evaluation scores from a principal component analysis based on anatomic structure traits from high to low were in the order TO > AO > NO. The P50 (xylem water potential at 50% loss of hydraulic conductivity) values of these grafted plants descended in the order NO > AO > TO, and the branch hydraulic conductivity of TO and sapwood hydraulic conductivity of TO and AO were significantly lower than those of NO. Thus, TO plants exhibited the strongest drought resistance, followed by AO, and NO, and this trait was related to the effects of different rootstocks on the fruit quality of ‘O’Neal’ blueberry. These results provided a basis for a deeper understanding of the interaction between rootstocks and scions, as well mechanisms to improve blueberry fruit quality.

Keywords