Electronic Structure Regulated Nickel-Cobalt Bimetal Phosphide Nanoneedles for Efficient Overall Water Splitting
Heyang Xu,
Xilin She,
Haolin Li,
Chuanhui Wang,
Shuai Chen,
Lipeng Diao,
Ping Lu,
Longwei Li,
Liwen Tan,
Jin Sun,
Yihui Zou
Affiliations
Heyang Xu
State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
Xilin She
State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
Haolin Li
State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
Chuanhui Wang
State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
Shuai Chen
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Lipeng Diao
Qingdao Hanxing New Materials Co., Ltd., Qingdao 266109, China
Ping Lu
State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
Longwei Li
State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
Liwen Tan
State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
Jin Sun
State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
Yihui Zou
State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
Transition metal phosphides (TMPs) have been widely studied for water decomposition for their monocatalytic property for anodic or cathodic reactions. However, their bifunctional catalytic activity still remains a major challenge. Herein, hexagonal nickel-cobalt bimetallic phosphide nanoneedles with 1–3 μm length and 15–30 nm diameter supported on NF (NixCo2−xP NDs/NF) with adjusted electron structure have been successfully prepared. The overall alkaline water electrolyzer composed of the optimal anode (Ni0.67Co1.33P NDs/NF) and cathode (Ni1.01Co0.99P NDs/NF) provide 100 mA cm−2 at 1.62 V. Gibbs Free Energy for reaction paths proves that the active site in the hydrogen evolution reaction (HER) is Ni and the oxygen evolution reaction (OER) is Co in NixCo2−xP, respectively. In the HER process, Co-doping can result in an apparent accumulation of charge around Ni active sites in favor of promoting HER activity of Ni sites, and ΔGH* of 0.19 eV is achieved. In the OER process, the abundant electron transfer around Co-active sites results in the excellent ability to adsorb and desorb *O and *OOH intermediates and an effectively reduced ∆GRDS of 0.37 eV. This research explains the regulation of electronic structure change on the active sites of bimetallic materials and provides an effective way to design a stable and effective electrocatalytic decomposition of alkaline water.