Sensors (May 2014)

A Novel Micro- and Nano-Scale Positioning Sensor Based on Radio Frequency Resonant Cavities

  • Estibaliz Asua,
  • Victor Etxebarria,
  • Alfredo García-Arribas,
  • Jorge Feutchwanger,
  • Joaquín Portilla,
  • Julio Lucas

DOI
https://doi.org/10.3390/s140609615
Journal volume & issue
Vol. 14, no. 6
pp. 9615 – 9627

Abstract

Read online

In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces.

Keywords