PLoS ONE (Jan 2020)

A deep learning backcasting approach to the electrolyte, metabolite, and acid-base parameters that predict risk in ICU patients.

  • Albion Dervishi

DOI
https://doi.org/10.1371/journal.pone.0242878
Journal volume & issue
Vol. 15, no. 12
p. e0242878

Abstract

Read online

BackgroundA powerful risk model allows clinicians, at the bedside, to ensure the early identification of and decision-making for patients showing signs of developing physiological instability during treatment. The aim of this study was to enhance the identification of patients at risk for deterioration through an accurate model using electrolyte, metabolite, and acid-base parameters near the end of patients' intensive care unit (ICU) stays.MethodsThis retrospective study included 5157 adult patients during the last 72 hours of their ICU stays. The patients from the MIMIC-III database who had serum lactate, pH, bicarbonate, potassium, calcium, glucose, chloride, and sodium values available, along with the times at which those data were recorded, were selected. Survivor data from the last 24 hours before discharge and four sets of nonsurvivor data from 48-72, 24-48, 8-24, and 0-8 hours before death were analyzed. Deep learning (DL), random forest (RF) and generalized linear model (GLM) analyses were applied for model construction and compared in terms of performance according to the area under the receiver operating characteristic curve (AUC). A DL backcasting approach was used to assess predictors of death vs. discharge up to 72 hours in advance.ResultsThe DL, RF and GLM models achieved the highest performance for nonsurvivors 0-8 hours before death versus survivors compared with nonsurvivors 8-24, 24-48 and 48-72 hours before death versus survivors. The DL assessment outperformed the RF and GLM assessments and achieved discrimination, with an AUC of 0.982, specificity of 0.947, and sensitivity of 0.935. The DL backcasting approach achieved discrimination with an AUC of 0.898 compared with the DL native model of nonsurvivors from 8-24 hours before death versus survivors with an AUC of 0.894. The DL backcasting approach achieved discrimination with an AUC of 0.871 compared with the DL native model of nonsurvivors from 48-72 hours before death versus survivors with an AUC of 0.846.ConclusionsThe DL backcasting approach could be used to simultaneously monitor changes in the electrolyte, metabolite, and acid-base parameters of patients who develop physiological instability during ICU treatment and predict the risk of death over a period of hours to days.