Applied Sciences (Aug 2022)
Rapid Temperature Control in Melt Extrusion Additive Manufacturing Using Induction Heated Lightweight Nozzle
Abstract
An approach for improving and maintaining consistent fusion quality of the deposited material during FDM 3d-printing is proposed. This approach is based on the nozzle temperature control during the printing process to adjust the polymer extrusion temperature with a speed and accuracy adequate to the FDM process. High frequency induction heating of the lightweight nozzle (<1 g) was used. To control the temperature of a lightweight nozzle, the resonant temperature measurement method based on the analysis of the high frequency eddy currents is proposed. To determine the parameters of the nozzle and the inductor as a plant, a FEM model of the inductive heating of the nozzle and a simulated model of a serial-parallel resonant circuit containing inductor were developed. Linearization of the automatic control system was performed to ensure the equal quality of regulation when operating in a wide temperature range. The quality of regulation, stability of the system, and coefficients of the PID controller were evaluated using a simulated model of the control system. A number of test samples were printed from various materials, and tensile stress testing was carried out. The developed control method reduces the nozzle temperature control error from 20 to 0.2 °C and decreases control delay by more than six times.
Keywords