Heliyon (Apr 2024)

HBO1/KAT7/MYST2 HAT complex regulates human adenovirus replicative cycle

  • Heba Kamel,
  • Varsha Shete,
  • Sayikrushna Gadamsetty,
  • Drayson Graves,
  • Scott Bachus,
  • Nikolas Akkerman,
  • Peter Pelka,
  • Bayar Thimmapaya

Journal volume & issue
Vol. 10, no. 7
p. e28827

Abstract

Read online

Human adenoviruses (HAdV) belong to a small DNA tumor virus family that continues as valuable models in understanding the viral strategies of usurping cell growth regulation. A number of HAdV type 2/5 early viral gene products interact with a variety of cellular proteins to build a conducive environment that promotes viral replication. Here we show that HBO1 (Histone Acetyltransferase Binding to ORC1), a member of the MYST histone acetyltransferase (HAT) complex (also known as KAT7 and MYST2) that acetylates most of the histone H3 lysine 14, is essential for HAdV5 growth. HBO1/MYST2/KAT7 HAT complexes are critical for a variety of cellular processes including control of cell proliferation. In HBO1 downregulated human cells, HAdV5 infection results in reduced expression of E1A and other viral early genes, virus growth is also reduced significantly. Importantly, HBO1 downregulation reduced H3 lysine 14 acetylation at viral promoters during productive infection, likely driving reduced viral gene expression. HBO1 was also associated with viral promoters during infection and co-localized with viral replication centers in the nuclei of infected cells. In transiently transfected cells, overexpression of E1A along with HBO1 stimulated histone acetyltransferase activity of HBO1. E1A also co-immunoprecipitated with HBO1 in transiently transfected cells. In summary, our results demonstrate that HAdV recruits the HBO1 HAT complex to aid in viral replication.

Keywords