Analysis of Potato Physiological and Molecular Adaptation in Response to Different Water and Nitrogen Combined Regimes
Wenyuan Yan,
Junhong Qin,
Yinqiao Jian,
Jiangang Liu,
Chunsong Bian,
Liping Jin,
Guangcun Li
Affiliations
Wenyuan Yan
State Key Laboratory of Vegetable Biobreeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Junhong Qin
State Key Laboratory of Vegetable Biobreeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Yinqiao Jian
State Key Laboratory of Vegetable Biobreeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Jiangang Liu
State Key Laboratory of Vegetable Biobreeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Chunsong Bian
State Key Laboratory of Vegetable Biobreeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Liping Jin
State Key Laboratory of Vegetable Biobreeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Guangcun Li
State Key Laboratory of Vegetable Biobreeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Water and nitrogen are essential for potato growth and development. We aim to understand how potato adapts to changes in soil water and nitrogen content. Potato plant adaptations to changes in soil moisture and nitrogen levels were analyzed at the physiological and transcriptomic levels in four treatment groups: adequate nitrogen under drought, adequate nitrogen under sufficient irrigation, limited nitrogen under drought, and limited nitrogen under sufficient irrigation. Many light-capture pigment complex genes and oxygen release complex genes were differentially expressed in leaves when nitrogen levels were increased under drought conditions, and several genes encoding rate-limiting enzymes in the Calvin–Benson–Bassham cycle were up-regulated; furthermore, leaf stomatal conductance decreased, whereas the saturated vapor pressure difference and relative chlorophyll content in the chloroplasts increased. StSP6A, a key gene in potato tuber formation, was down-regulated in response to increased nitrogen application, and the stolon growth time was prolonged. Genes related to root nitrogen metabolism were highly expressed, and protein content in the tuber increased. Weighted gene co-expression network analysis (WGCNA) revealed 32 gene expression modules that responded to changes in water and nitrogen levels. A total of 34 key candidate genes were identified, and a preliminary molecular model of potato responses to alterations in soil water and nitrogen content was constructed.