BMC Medical Genetics (Mar 2008)

Genes implicated in multiple sclerosis pathogenesis from consilience of genotyping and expression profiles in relapse and remission

  • Stewart Graeme J,
  • Heard Robert NS,
  • Bye Chris,
  • Armati Patricia J,
  • Arthur Ariel T,
  • Pollard John D,
  • Booth David R

DOI
https://doi.org/10.1186/1471-2350-9-17
Journal volume & issue
Vol. 9, no. 1
p. 17

Abstract

Read online

Abstract Background Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Although the pathogenesis of MS remains unknown, it is widely regarded as an autoimmune disease mediated by T-lymphocytes directed against myelin proteins and/or other oligodendrocyte epitopes. Methods In this study we investigated the gene expression profiles of peripheral blood cells from patients with RRMS during the relapse and the remission phases utilizing gene microarray technology. Dysregulated genes encoded in regions associated with MS susceptibility from genomic screens or previous trancriptomic studies were identified. The proximal promoter region polymorphisms of two genes were tested for association with disease and expression level. Results Distinct sets of dysregulated genes during the relapse and remission phases were identified including genes involved in apoptosis and inflammation. Three of these dysregulated genes have been previously implicated with MS susceptibility in genomic screens: TGFβ1, CD58 and DBC1. TGFβ1 has one common SNP in the proximal promoter: -508 T>C (rs1800469). Genotyping two Australian trio sets (total 620 families) found a trend for over-transmission of the T allele in MS in females (p C (rs12762303) and a 6 bp tandem repeat polymorphism (GGGCGG) between position -147 and -176; but no evidence for transmission distortion found. Conclusion The dysregulation of these genes tags their metabolic pathways for further investigation for potential therapeutic intervention.