Microbiology Spectrum (Aug 2024)

Alterations in gut microbiota and inflammatory cytokines after administration of antibiotics in mice

  • Wang Gao,
  • Xingyu Liu,
  • Shuobo Zhang,
  • Jingxia Wang,
  • Bo Qiu,
  • Junhua Shao,
  • Weixin Huang,
  • Yilun Huang,
  • Mingfei Yao,
  • Ling-Ling Tang

DOI
https://doi.org/10.1128/spectrum.03095-23
Journal volume & issue
Vol. 12, no. 8

Abstract

Read online

ABSTRACT Antibiotics are widely used to treat bacterial infection and reduce the mortality rate, while antibiotic overuse can cause gut microbiota dysbiosis. The impact of antibiotics on gut microbiota is not fully understood. In our study, four commonly used antibiotics (ceftazidime, cefoperazone-sulbactam, imipenem-cilastatin, and moxifloxacin) were given subcutaneously to mice, and their impacts on the gut microbiota composition and serum cytokine levels were evaluated through 16S rRNA analysis and a multiplex immunoassay. Antibiotic treatment markedly reduced gut microbiota diversity and changed gut microbiota composition. Antibiotic treatment significantly increased and decreased the abundance of Firmicutes and Bacteroidota, respectively. The antibiotic treatments increased the abundance of opportunistic pathogens such as Enterococcus and decreased that of Lachnospiraceae and Muribaculaceae. For moxifloxacin, the significantly high abundance of Enterococcus and Klebsiella was observed after 14 and 21 days of treatment. However, a relatively low abundance of opportunistic pathogens was found after 14 days of imipenem-cilastatin treatment. Additionally, the serum levels of various pro-inflammatory cytokines, such as IL-1β, IL-12 (p70), and IL-17, significantly increased after 21 days of antibiotic treatments. Overall, these results provide a guide for rational use of antibiotics in clinical settings: short-term use of moxifloxacin is recommended with regard to gut microbiota health, and the 14-day use of imipenem-cilastatin may have a less severe impact than other antibiotics.IMPORTANCEAntibiotic treatments are directly associated with changes in gut microbiota and are effective against both pathogens and beneficial bacteria. Gut microbiota dysbiosis induced by antibiotic treatment could increase the risk of some diseases. Therefore, an adequate understanding of gut microbiota changes after antibiotic use is crucial. In this study, we investigated the effects of continuous treatment with antibiotics on gut microbiota, serum cytokines, and intestinal inflammatory response. Our results suggest that short-term use of moxifloxacin is recommended, and the 14-day use of imipenem-cilastatin may have a less severe effect on gut microbiota health than cefoperazone-sulbactam. These results provide useful guidance on the rational use of antibiotics with regard to gut microbiota health.

Keywords