Scientific Reports (Apr 2021)

A 300-GHz low-cost high-gain fully metallic Fabry–Perot cavity antenna for 6G terahertz wireless communications

  • Basem Aqlan,
  • Mohamed Himdi,
  • Hamsakutty Vettikalladi,
  • Laurent Le-Coq

DOI
https://doi.org/10.1038/s41598-021-87076-3
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Abstract A low-cost, compact, and high gain Fabry–Perot cavity (FPC) antenna which operates at 300 GHz is presented. The antenna is fabricated using laser-cutting brass technology. The proposed antenna consists of seven metallic layers; a ground layer, an integrated stepped horn element (three-layers), a coupling layer, a cavity layer, and an aperture-frequency selective surface (FSS) layer. The proposed aperture-FSS function acts as a partially reflective surface, contributing to a directive beam radiation. For verification, the proposed sub-terahertz (THz) FPC antenna prototype was developed, fabricated, and measured. The proposed antenna has a measured reflection coefficient below − 10 dB from 282 to 304 GHz with a bandwidth of 22 GHz. The maximum measured gain observed is 17.7 dBi at 289 GHz, and the gain is higher than 14.4 dBi from 285 to 310 GHz. The measured radiation pattern shows a highly directive pattern with a cross-polarization level below − 25 dB over the whole band in all cut planes, which confirms with the simulation results. The proposed antenna has a compact size, low fabrication cost, high gain, and wide operating bandwidth. The total height of the antenna is 1.24 $${\lambda }_{0}$$ λ 0 ( $${\lambda }_{0}$$ λ 0 at the design frequency, 300 GHz) , with a size of 2.6 mm × 2.6 mm. The proposed sub-THz waveguide-fed FPC antenna is suitable for 6G wireless communication systems.