Water (Jan 2021)

Physiological Changes and Elemental Ratio of <i>Scrippsiella trochoidea</i> and <i>Heterosigma akashiwo</i> in Different Growth Phase

  • Xiaofang Liu,
  • Yang Liu,
  • Md Abu Noman,
  • Satheeswaran Thangaraj,
  • Jun Sun

DOI
https://doi.org/10.3390/w13020132
Journal volume & issue
Vol. 13, no. 2
p. 132

Abstract

Read online

The elemental ratios in phytoplankton are important for predicting biogeochemical cycles in the ocean. However, understanding how these elements vary among different phytoplankton taxa with physiological changes remains limited. In this paper, we determine the combined physiological–elemental ratio changes of two phytoplankton species, Scrippsiella trochoidea (Dinophyceae) and Heterosigma akashiwo (Raphidophyceae). Our results show that the cell growth period of S. trochoidea (26 days) was significantly shorter than that of H. akashiwo (32 days), with an average cell abundance of 1.21 × 104 cells·mL−1 in S. trochoidea and 1.53 × 105 cells·mL−1 in H. akashiwo. The average biovolume of S. trochoidea (9.71 × 103 μm3) was higher than that of H. akashiwo (0.64 × 103 μm3). The physiological states of the microalgae were assessed based on elemental ratios. The average ratios of particulate organic nitrogen (PON) to chlorophyll-a (Chl-a) and particulate organic carbon (POC) to Chl-a in S. trochoidea (57.32 and 168.16) were higher than those of H. akashiwo (9.46 and 68.86); however, the ratio of POC/PON of the two microalgae was nearly equal (6.33 and 6.17), indicating that POC/Chl-a may be lower when the cell is actively growing. The physiological variation, based on the POC/Chl-a ratio, in different phytoplankton taxa can be used to develop physiological models for phytoplankton, with implications for the marine biogeochemical cycle.

Keywords