BMC Cancer (Aug 2024)
Comprehensive pan-cancer analysis reveals EPHB2 is a novel predictive biomarker for prognosis and immunotherapy response
Abstract
Abstract Purpose Recent studies have increasingly linked Ephrin receptor B2 (EPHB2) to cancer progression. However, comprehensive investigations into the immunological roles and prognostic significance of EPHB2 across various cancers remain lacking. Methods We employed various databases and bioinformatics tools to investigate the impact of EPHB2 on prognosis, immune infiltration, genome instability, and response to immunotherapy. Validation of the correlation between EPHB2 expression and M2 macrophages included analyses using bulk and single-cell transcriptomic datasets, spatial transcriptomics, and multi-fluorescence staining. Moreover, we performed cMap web tool to screen for EPHB2-targeted compounds and assessed their potential through molecular docking and dynamics simulations. Additionally, in vitro validation using lung adenocarcinoma (LUAD) cell lines was conducted to confirm the bioinformatics predictions about EPHB2. Results EPHB2 dysregulation was observed across multiple cancer types, where it demonstrated significant diagnostic and prognostic value. Gene Set Enrichment Analysis (GSEA) indicated that EPHB2 is involved in enhancing cellular proliferation, invasiveness of cancer cells, and modulation of the anti-cancer immune response. Furthermore, it is emerged as a pan-cancer marker for M2 macrophage infiltration, supported by integrated analyses of transcriptomics and multiple fluorescence staining. In LUAD cells, knockdown of EPHB2 expression led to a decrease in both cell proliferation and migratory activity. Conclusion EPHB2 expression may serve as a pivotal indicator of M2 macrophage infiltration, offering vital insights into tumor dynamics and progression across various cancers, including lung adenocarcinoma, highlighting its significant prognostic and therapeutic potential for further exploration.
Keywords