PeerJ
(Jul 2024)
Innovative infrastructure to access Brazilian fungal diversity using deep learning
Thiago Chaves,
Joicymara Santos Xavier,
Alfeu Gonçalves dos Santos,
Kelmer Martins-Cunha,
Fernanda Karstedt,
Thiago Kossmann,
Susanne Sourell,
Eloisa Leopoldo,
Miriam Nathalie Fortuna Ferreira,
Roger Farias,
Mahatmã Titton,
Genivaldo Alves-Silva,
Felipe Bittencourt,
Dener Bortolini,
Emerson L. Gumboski,
Aldo von Wangenheim,
Aristóteles Góes-Neto,
Elisandro Ricardo Drechsler-Santos
Affiliations
Thiago Chaves
Brazilian National Institute for Digital Convergence—INCoD, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Joicymara Santos Xavier
Institute of Agricultural Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, Minas Gerais, Brazil
Alfeu Gonçalves dos Santos
Brazilian National Institute for Digital Convergence—INCoD, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Kelmer Martins-Cunha
MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Fernanda Karstedt
MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Thiago Kossmann
MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Susanne Sourell
MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Eloisa Leopoldo
MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Miriam Nathalie Fortuna Ferreira
Brazilian National Institute for Digital Convergence—INCoD, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Roger Farias
Brazilian National Institute for Digital Convergence—INCoD, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Mahatmã Titton
MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Genivaldo Alves-Silva
MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Felipe Bittencourt
MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Dener Bortolini
Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
Emerson L. Gumboski
Department of Biological Sciences, Regional University of Joinville (UNIVILLE), Joinville, Santa Catarina, Brazil
Aldo von Wangenheim
Brazilian National Institute for Digital Convergence—INCoD, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Aristóteles Góes-Neto
Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
Elisandro Ricardo Drechsler-Santos
MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
DOI
https://doi.org/10.7717/peerj.17686
Journal volume & issue
Vol. 12
p.
e17686
Abstract
Read online
Read online
In the present investigation, we employ a novel and meticulously structured database assembled by experts, encompassing macrofungi field-collected in Brazil, featuring upwards of 13,894 photographs representing 505 distinct species. The purpose of utilizing this database is twofold: firstly, to furnish training and validation for convolutional neural networks (CNNs) with the capacity for autonomous identification of macrofungal species; secondly, to develop a sophisticated mobile application replete with an advanced user interface. This interface is specifically crafted to acquire images, and, utilizing the image recognition capabilities afforded by the trained CNN, proffer potential identifications for the macrofungal species depicted therein. Such technological advancements democratize access to the Brazilian Funga, thereby enhancing public engagement and knowledge dissemination, and also facilitating contributions from the populace to the expanding body of knowledge concerning the conservation of macrofungal species of Brazil.
Keywords
Published in PeerJ
ISSN
2167-8359 (Online)
Publisher
PeerJ Inc.
Country of publisher
United States
LCC subjects
Medicine
Science: Biology (General)
Website
https://peerj.com/
About the journal
WeChat QR code
Close